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Abstract—In this work, we develop a new neural network
potential for silicon and perform accurate molecular dynamics
simulations of the liquid, amorphous and diamond phases. The
potential is tested against several physical properties and the
solid phase epitaxy process is simulated.

I. INTRODUCTION

Silicon based modern technology is facing an ongoing
miniaturization challenge because faster and less power-
hungry devices are required for all sort of applications, from
small and super portable sensors to the development of new
supercomputer chips. Industrial fabrication has already moved
towards the exploitation of the third dimension as a way
to pack chips reaching the astonishing small scale of tens
of nanometer per single transistor. At such a small scale a
plethora of phenomena that drive the device formation need
a more accurate theoretical understanding to allow for more
reliable device production.

In the multi-scale modeling approach often adopted to
explain macroscopic experimental observations [1], a critical
step that drastically impacts the accuracy of the theoretical
prediction is the choice of an empirical potential to describe
the atomistic scale. Common empirical potentials used in
studies of the liquid, amorphous and diamond phases - crucial
for the investigation of any step in the formation of a silicon
device - have more or less complex functional forms, inspired
by intuition and physical insight, with few parameters fitted
either to macroscopic properties or accurate calculations [2],
[3]. One of the big problems of these potentials is their lack of
flexibility, so that if they aim to be general they suffer limited
accuracy and can fail to correctly describe the individual
phases. On the other hand their great advantage is to be
computationally very efficient as compared to more accurate
first-principles calculations.

In recent years very flexible machine-learning (ML) poten-
tials, trained on ab-initio data, are emerging as an attempt
to get the best of the two worlds [4]–[9]: reaching the
accuracy of first principle calculations at the computational

cost of an empirical potential. Several different ML techniques
are available, with advantages and disadvantages [9]. After
sketching the methodology in Sec. II, Sec. III and Sec. IV are
dedicated to the creation of the dataset and the testing of the
potential. Sec. V simulates the solid phase epitaxy (SPE).

II. METHODOLOGY

The construction of a neural network potential can follow
several approaches [7]. We adopted the method originally
proposed by Behler et al. [8] for its generality, that allows
the treatment of systems with a varying number of atoms, and
gives a good compromise between speed and accuracy. Within
this framework, as for most empirical potentials, one makes
the assumption that the total energy E of a system can be
expressed as a sum over atomic energy contributions:

E =
∑
i

Ei. (1)

where the index i labels the atoms in the unit cell.
Each atomic energy term is expressed as a function of the local
environment surrounding a central atom and is realized by a
neural networks (NN). Different NNs are used to compute the
contribution of different atomic species.

The complete definition of a NN potential requires the spec-
ification of i) an encoding for the local atomic environments
in the form of a vector that can be used as input to the NN and
ii) the specification of the NN architecture (shape) to process
it. Here the input, or descriptor, is implemented adopting the
Symmetry Function (SF) concept first proposed in [8] and
later extended in [4], [6]. SFs are continuous many-body func-
tions G ({ri | |ri − rref | < rc}) of the atomic coordinates ri
within a cutoff distance, rc, from a reference atom (situated
at rref ) that encode the local information in a translationally,
rotationally and permutationally invariant way. The adopted
descriptor comprises purely radial SF components, sampling
the distance between rmin = 0.5 Å and rc = 4.6 Å over 32
bins, and combined angular-radial terms with 12 angular and



6 radial bins between 0 and π and 1.5 and 4.6 Å, respectively.
Further hyperparameters were fixed to η = 16.0 in the radial
terms and ξ = 50 and η = 6.0 in the angular-radial part. This
results in SFs with a total of 104 (32 radial and 12× 6 = 72
angular) components.

As for the specific shape of the NN we adopted an all-to-all-
connected feed-forward (FFNN) architecture for its flexibility.
Formally a L-layer FFNN can be defined as:

x
(l)
i = f (l)

nodesl−1∑
j

w
(l)
i,jx

(l−1)
j + b

(l)
i

 , l = 1, ..., L, (2)

where for each layer, l, and each of its nodes, i, the output,
x
(l)
i , is formed as a linear combination of the previous layer

information using layer dependent bias, b(l)i , and weights, w(l)
i,j ,

and passing this intermediate result through a layer dependent
activation function, f (l). The special case x

(0)
j is the input

vector that is in our case the collection of 104 SF components,
while x(L)

1 is the single neuron of the output layer containing
the predicted atomic energy contribution. A sketch of the SF
generation and of the NN architecture used can be seen in the
left panel of Fig. 1.

In our case we used two hidden layers (hence L = 3)
of 256 and 128 nodes with hyperbolic tangent activation
functions and a single output node with linear activation.
This is at variance with the Gaussian activation previously
adopted [4]–[6] and required a precondition of the input
that must be transformed from the positive defined SF to a
symmetrical distribution around the origin. To obtain this we
added a linear, non trainable, layer to the network to perform
a precomputed principal components analysis on the input
lowering its dimension from 104 to 86 components. After this
step we are left with a model with 59905 degrees of freedom.

Given a NN architecture the model is optimized (trained)
minimizing the deviation of the predicted values from the
ones computed from first-principles for a set of structures
representative of the phenomenon of interest. The creation of
such a dataset is detailed in Sec.III. The model error estimate
(loss function) is minimized via stochastic gradient descent
where mini-batches of the training data are randomly selected
and used to compute a noisy estimate of the loss-function
gradient and update the model parameters. A portion of the
dataset is kept aside for validation on previously unseen data
(a standard procedure in ML). Training is achieved when
no further improvement is seen on the validation loss. The
training procedure is sketched in the right panel of Fig. 1.

III. CREATION OF THE DATASET

For empirical potential such as the ones proposed by Tersoff
[2] or Stillinger and Weber (SW) [3], one defines a parametric
functional form and fixes its few parameters in such a way
that a set of stable phases and macroscopic properties are
correctly reproduced, assuming that this will allow him/her
to perform studies of other related properties. If this is not the
case there is not much one can do about. For NN potentials

Fig. 1. On the left side: a pictorial view of a FFNN can be realized as
an ensemble of nodes arranged in layers. Each node or neuron is a uniquely
parametrized mathematical function that takes as input the vector that is passed
to the layer it is part of and returns as output the value of the function for the
given input. Layers are chained together from the "input" to the "output" in a
hierarchical manner such that the output of the above layer is given as input
to the next layer. The vector passed to the input layer is commonly defined
as the features vector and the output layer is composed of a single neuron the
output of which is the local contribution to the total energy. The extrapolation
from one FFNN to a potential is trivial: each features vector is labeled with
the species of the central atom and is processed accordingly by a different
FFNN. The combination of all these networks (one per species) defines a full
potential. On the right side: the main training/validation procedure is sketched.

the situation is quite different: once the (great) flexibility
of the class of representable functionals is defined by the
choice of a specific architecture, the many parameters defining
the model are determined in order to reproduce accurate
calculation performed on a number or configurations deemed
representative. The training/validation dataset is crafted by
sampling configurations that will likely be explored during the
process of interest. As we are aiming at describing the complex
crystal/amorphous interface dynamics in SPE, a number of
different phase space regions have been included in the dataset:
crystalline and amorphous bulk, surfaces, liquids, and more.
The final accuracy in each region depends on the amount of
sampling and on the variability of local configurations: regions
with limited variability require little sampling while regions
with more entropy require larger amounts of data points.

Different parts of the phase space were sampled with dif-
ferent details but all following a common strategy: molecular
dynamics (MD) were performed using LAMMPS [10]; from
these MD trajectories a number of uncorrelated samples were
extracted and their accurate energy and forces were obtained
with the Quantum ESPRESSO [11] DFT package (with a
cutoff of 50 Ry and a 46.10 Å k-points grid linear-density).
These calculated values become part of the dataset. The
exchange-correlation functional initially selected was PBE-sol,
a PBE-type functional optimized for solid and surfaces [12].
The dataset energies and forces were later recomputed with the
original PBE functional [13] to address the unexpected poor
description of the melting temperature obtained with PBE-sol
(more about this in Results Sec. IV).

Diamond bulk was sampled around its harmonic minimum
using Tersoff potential. For other phases, that show higher



complexity, we proceeded with an iterative scheme similar to
the one we proposed in [5]. A first round of MD sampling
is performed with empirical or (rough) NN potentials. Points
collected from these MDs are used to train new, more accurate,
NNs. These potentials are iteratively used to perform more
MDs exploring additional, more relevant, geometries to be
added in the dataset to improve the quality of the potential.
This procedure stops when no appreciable additional phase
space sampling is observed in subsequent iterations. Some
of the configurations from earlier iterations might then be
removed from the dataset as not sampled anymore by the
accurate self-consistent potential.

The sampling of the amorphous phase was conducted
starting from Tersoff potential and annealing setup similar
to one used in previous SPE studies [14]. The liquid was
sampled in a similar way as the amorphous. We also added
a few solid/liquid interface samples to include realistically
intermediate local environments.

Sampling of crystalline surfaces was a bit tricky as none of
the commonly used empirical potentials was able to describe
correctly the asymmetric dimerization present at the (001)
surface. We therefore generated a preliminary NN potential
by using part of the database developed by Bartok et al.
for their GAP potential [15]. Despite not being optimal for
NN application this database was sufficient to provide a fair
starting point reducing the number of self-consistent iterations
needed and was kept in the training set for all iterations.

During the evolution, the dataset variability was monitored
using a t-sne bidimensional projection of the explored dataset
as presented in Fig. 2. This showed how configurations gen-
erated by Tersoff and early generation NN potentials explore
different geometries from those consistently found by newer
generations of NN potentials.

Approximately 16 thousand points were collected, for a total
of 890 thousand local environments. After removing the data
from [15], the structures that were no longer visited during the
latest iterations of the self consistent procedure, and applying
a random uniform sub-sampling on the remaining dataset
we were left with approximately 5 thousand data points,
or 250 thousand local environments. A standard splitting of
the dataset in a training part (containing 80% of the data)
and a validation part (containing 20% of the data) has been
performed, paying attention that the same fraction of training
and validation data were present in every subset so as to allow
an homogeneous testing in different regions of the phase space.

IV. RESULTS

The overall validation accuracy of the NN potential trained
on the previously described dataset, with energies evaluated
according to the PBE exchange-correlation functional, is of
5.6 meV/atom for the energy per atom root mean square error
(RMSE) and of 153 meV/Å mean error per forces component.
This accuracy is comparable with the one obtained by others
with similar approaches [17]. A more detailed analysis of the
validation accuracy decomposed over the different sampled
macro regions of the phase space described in the previous

all
amorphous

bulk
liquid

surfaces

Fig. 2. The figure shows the t-sne applied to the structures in the dataset using
the fingerprint defined in Valle et al. [16] and the related distance. In gray all
the available structures are presented while colored points refer to the final
dataset. Different colors highlight macro-regions of the phase space. Small
sparse gray islands are points from the variegate dataset in [15]. Big dense
gray islands instead are region sampled by older iterations of the potential
excluded because no more visited.

section is shown in Fig. 3 and shows that the accuracy is
rather uniform across the phase space.

Fig. 3. Distributions of the errors per dataset in energies (top panel, box
corresponds to the first quartile) and Forces (bottom panel, different boxes
represent different quartiles) are presented. It can be seen how phases with
the highest variability (liquid and amorphous) show the highest errors. At this
point different RMSE can be computed for energies and forces depending on
the subset of points: 5.8 meV - 170 meV/Å for the amorphous, 0.9 meV -
66 meV/Å for the bulk, 7.5 meV - 196 meV/Å for the liquid and 3.4 meV -
103 meV/Å for the surfaces.

In order to get a feeling of the quality of the potential
associated to these reported numerical errors we tested it
investigating a few physical properties that can be compared
with experiments and/or DFT references. A comprehensive
test has been carried out for the diamond structure where
we checked the accuracy of the Energy-Volume curve and
computed the bulk modulus obtaining a value of 98.0 GPa,
close to the experimental value of 97.6 GPa [18]. Full phonon
dispersions were also investigated obtaining results very close
to the DFT reference (see bottom panel of Fig. 4).

SPE dynamics critically depends on the temperature in-
volved and commonly adopted empirical potentials either fail
terribly in describing the thermal stability of the different
phases or, if they succeed in it, fail in other aspects.

For example, the SW potential has a melting temperature
of 1691±20 K [19] but generates amorphous of poor quality.
Tersoff potential, on the other hand, is believed to generate
realistic amorphous geometries but it predicts a melting tem-



perature of 2547± 22 K [20]. Errors in the predicted melting
temperature are likely to impact defect formation and diffusion
dynamics, relevant for SPE. We hence turned to the study
of the bulk melting temperature, equilibrating samples where
crystalline and liquid phases coexist [21]–[23].

We were disappointed to find out that the PBE-sol functional
originally adopted gave a NN potential whose bulk melting
temperature was as low as 1194 ± 28 K. This induced us,
after several cross checks, to resort to the original PBE xc-
functional, obtaining a melting temperature of 1468 ± 11 K,
in line with the literature value of 1540 ± 50 K [24], still
slightly off w.r.t. the experimental value of 1685 ± 2 K. The
unsuitability of PBE-sol functional to describe melting behav-
ior of materials has been recently independently confirmed for
GAP potentials [25].

Having obtained a reasonable description of the liquid/solid
transition we proceeded to study the amorphous phase. We
followed the procedure described in Ref. [26], [27] where liq-
uid samples were quenched with a 10K/ps ramp. Amorphous
samples of very good quality are thus obtained. In the top
panel of Fig. 4 the structure factor from the largest simulated
cell (4096 atoms) is compared with experimental results.
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Fig. 4. Top Panel: Amorphous silicon structure factor S(q). Dots are exper-
imental points [28], green line from NN potential. Bottom Panel: Diamond
phonons of silicon. DFT prediction with PBE (black line) and NN (red line).

Next we examined in detail the (001) surfaces that play a
very important role on microelectronic devices [29]. Several
reconstructions have been proposed in [29]: p(1x1) also known
as Ideal, p(2x1) symmetric, p(2x1) asymmetric, p(2x2) and
c(4x2). Of these four structures only the last three have proven
to be stable with sufficiently accurate calculations. The energy
differences among predicted structures can be seen in Fig. 5.
Geometries were also compared and our NN potential has
shown to be able to correctly predict the dimer tilting angle of
18◦ for the p(2x1) asymmetric phase as well as the 19◦ angle
of the p(2x2) and c(4x2) ones, in accordance with DFT.

V. PRELIMINARY OBSERVATION OF THE SPE MECHANISMS

The overall broad accuracy shown by our NN potential for
so many properties gives us confidence in its adequacy to
explore the more complex phenomenon of SPE. Using a MD
procedure similar to the one described in [27], we created an
amorphous/crystalline diamond interface and performed a first
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Fig. 5. Surfaces energies. From left to right, PBE-Sol energies, PBE energies,
NN energies for PBE geometries, NN energies after relaxation. The c(4x2)
structure has always been taken as zero reference. DFT geometries have been
obtained by relaxation with the BFGS algorithm, as a force threshold we
opted for the default 25 meV/Å. Minimization with NN potentials were
performed with the same threshold. Both DFT calculations predicted the
p(2x1) symmetric structure as stable with a low k-points grid, the reported
energy is a successive SCF calculation with the high accuracy grid. In the
last column the s p(2x1) geometry has relaxed to the a p(2x1) structure. The
p(2x2) and the c(4x2) are incorrectly ordered but their difference in energy
is below our error threshold.

SPE simulation at 1050 K. Already in this preliminary simu-
lation we can see that 3D pyramidal motives, expected from
the different reconstructions speed measured experimentally
[30], appear (presented in Fig. 6). A detailed study of SPE
mechanism and speed is underway.

Fig. 6. 3D pyramidal motives appearing during the solid phase epitaxy
simulation at 1050K. Only tetrahedrally coordinated atoms with angles
compatible with the diamond structure are presented for simplicity.

VI. CONCLUSIONS AND OUTLOOK

We have shown that NN potentials are a valid way to
model physical phenomena at the atomistic level through
the creation and testing of a potential for silicon from a
diverse dataset, crafted from crystalline, amorphous, liquid
and surface configurations. As a byproduct, we found that
PBE-sol xc-functional is not suitable to study thermal related
phenomena in silicon. With the developed potential we are
investigating the SPE process, focusing on the underlying
recrystallization mechanism and speed. We expect that the
resulting insight will allow us to improve the prediction of
TCAD codes, possibly solving the longstanding problem of the
experimentally observed difference in recrystallization speed
in different growth directions.
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